The Role of 15-lipoxygenase-1- and Cyclooxygenase-2-derived Lipid Mediators in Endothelial Cell Proliferation

نویسنده

  • Cong Wei
چکیده

It is a generally accepted paradigm that there is a direct link between inflammation and tumor progression. During inflammation, there is increased formation of lipid hydroperoxides, mediated either nonenzymatically by reactive oxygen species or enzymatically by lipoxygenases (LOs) or cyclooxygenases (COXs). Lipid hydroperoxides undergo further oxidation into oxo-eicosatetraenoic acids (oxo-ETEs), which are produced and released by cells including macrophages and epithelial cells. Therefore, these oxo-ETEs could potentially mediate biological effects in an autocrine and/or a paracrine manner. In addition, oxo-ETEs conjugate intracellular glutathione (GSH) to form adducts which could serve as biomarkers of oxo-ETE formation. In this study, a targeted lipidomics approach combined with stable isotope dilution methodology was employed to identify and quantify lipid hydroperoxides and their metabolites formed in 15-LO-expressing mouse macrophage cell line (R15L cells) and COX-2 expressing cell models (RIES cells and Caco-2 cells) as well as in mouse hematocytes and primary human monocytes. 15-Oxo-5,8,11,13-(Z,Z,Z,E)-ETE (15-oxoETE) was identified and characterized as a major eicosanoid produced in both mouse and human macrophage 15-LO pathway. 15-Oxo-ETE was shown to be a metabolite of arachidonic acid (AA)-derived 15(S)hydroxyeicosatetraenoic acid (15(S)-HETE) by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). A novel biological activity of 15-oxo-ETE was revealed, which involved inhibition of human umbilical vein endothelial cell (HUVEC) proliferation by suppressing DNA synthesis, implicating a potential antiangiogenic role of 15-oxo-ETE. In addition to 15-oxo-ETE, another AA-derived eicosanoid 11-oxo-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (11-oxo-ETE), was identified as a major metabolite arising from COX-2-derived from 11(R)hydroxyl-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (11(R)-HETE) in both rat (RIES) and human (Caco-2) epithelial cell lines. A specific liquid chromatography-multiple reaction monitoring mass spectrometry (LCMRM/MS) method revealed that both 11-oxo-ETE and 15-oxo-ETE were secreted in nM concentrations when AA was added to RIES and human Caco-2 cells. Surprisingly, 11(R)-HETE was an excellent substrate for 15-PGDH, with a catalytic efficiency similar to that found for 15(S)-HETE. In addition, it was demonstrated that aspirin significantly stimulated the production of 15(R)-HETE, which was then converted to 15-oxo-ETE by an unknown dehydrogenase (DH). These findings could have significant clinical implications since 15-PGDH is down-regulated during carcinogenesis, which in addition to increasing the pro-proliferative activity of PGE2 would prevent the formation of anti-proliferative 15-oxo-ETE from 15(S)HETE. However, the formation of 15-oxo-ETE from 15(R)-HETE after aspirin treatment, through a pathway that does not involve 15-PGDH, could help counteract the increased pro-proliferative activity of PGE2. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/219 Graduate Group Pharmacological Sciences First Advisor DR. IAN A. BLAIR

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonredundant roles for leukotriene B4 receptors BLT1 and BLT2 in inflammatory arthritis.

Lipid mediators derived from arachidonic acid through the cyclooxygenase and lipoxygenase pathways are known to be important mediators of inflammation. Studies in mouse models demonstrated an important role for the high-affinity leukotriene B(4) receptor BLT1 in arthritis, atherosclerosis, and asthma. BLT2, a low-affinity leukotriene B(4) receptor, was also shown to be a high-affinity receptor ...

متن کامل

Regulated Spatial Distribution of Cyclooxygenases and Lipoxygenases in Crohn's Ulcer

BACKGROUND AND AIMS Arachidonic acid metabolism actively participates in the initiation, climaxing, and resolution phases of inflammation, and its close connection with inflammatory bowel diseases has been only recently discovered. We aimed to clarify the role of different arachidonic pathways and the interrelationships between them in Crohn's disease. METHODS Seventeen specimens of Crohn's d...

متن کامل

Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides wit...

متن کامل

Eosinophil Lipid Bodies: Specific, Inducible Intracellular Sites for Enhanced Eicosanoid Formation

The specific intracellular sites at which enzymes act to generate arachidonate-derived eicosanoid mediators of inflammation are uncertain. We evaluated the formation and function of cytoplasmic lipid bodies. Lipid body formation in eosinophils was a rapidly (<1 h) inducible response which was platelet-activating factor (PAF) receptor-mediated, involved signaling through protein kinase C, and re...

متن کامل

Allergic Asthmatics Show Divergent Lipid Mediator Profiles from Healthy Controls Both at Baseline and following Birch Pollen Provocation

BACKGROUND Asthma is a respiratory tract disorder characterized by airway hyper-reactivity and chronic inflammation. Allergic asthma is associated with the production of allergen-specific IgE and expansion of allergen-specific T-cell populations. Progression of allergic inflammation is driven by T-helper type 2 (Th2) mediators and is associated with alterations in the levels of lipid mediators....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014